
Author: Lokang Jackson

Book Name: C and MySQL
Variable Names
In the C programming language, a variable is a storage location for a value that can be modified
during the execution of a program. Variables are used to store data values and perform operations
on them.

To declare a variable in C, you need to specify the data type of the variable and its name. For
example:

int age;
float price;
char grade;

Here, age is an integer variable, price is a floating-point variable, and grade is a character variable.

You can also initialize a variable when you declare it by assigning a value to it. For example:

int age = 20;
float price = 9.99;
char grade = 'A';

After declaring and initializing a variable, you can use it in your program by referencing its name.
For example:

age = age + 1;
price = price * 0.8;

These statements increase the value of age by 1 and multiplies the value of price by 0.8.

It's important to note that variables in C must be declared before they are used, and they can only
hold values of the data type they were declared with.

Data Types
In programming, a data type is a classification that specifies the type of value a variable can hold.
Data types are an important concept in programming languages because they determine how a
programmer can use and manipulate the values stored in a variable.

In the C programming language, there are several built-in data types, including:

int: Integer data type for storing whole numbers.
float: Floating-point data type for storing decimal numbers.
double: Double-precision floating-point data type for storing larger decimal numbers.
char: Character data type for storing a single character.
void: Special data type used to represent the absence of a value or type.

There are also derived data types in C, which are created by combining the built-in data types in
different ways. For example:

array: A collection of variables of the same data type, indexed by a contiguous set of integers.
struct: A collection of variables of different data types, grouped together under a single name.
union: A special data type that allows a single memory location to be interpreted in different
ways.

It's important to choose the appropriate data type for your variables based on the values they will
hold and the operations you will perform on them. Using the correct data type can help ensure the
accuracy and efficiency of your program.

Here is an example of using variables of different data types in a C program:

#include <stdio.h>
int main()
{
 int age = 30;
 float height = 1.75;
 double salary = 45000.00;
 char gender = 'M';
 printf("Age: %d\n", age);
 printf("Height: %.2f\n", height);
 printf("Salary: %.2f\n", salary);
 printf("Gender: %c\n", gender);
 return 0;
}

In this example, we have declared four variables: age, height, salary, and gender. age and gender
are of type int and char, respectively, while height and salary are of type float and double,
respectively.

We have also initialized the variables with values when we declared them.

Then, we use the printf function to print the values of the variables to the console. The printf
function takes a format string as its first argument, followed by the values to be printed. The format
string specifies how the values should be formatted, using special formatting codes such as %d for
integers, %f for floating-point numbers, and %c for characters.

If you compile and run this program, it will print the following output:

Age: 30
Height: 1.75
Salary: 45000.00
Gender: M

Operators
Operators are special symbols in programming languages that perform specific operations on one or
more operands (values or variables). In the C programming language, there are several types of
operators, including:

Arithmetic operators: Perform basic arithmetic operations such as addition, subtraction,
multiplication, and division. For example:

int a = 10;
int b = 5;
int c = a + b; // c is 15
int d = a - b; // d is 5
int e = a * b; // e is 50
int f = a / b; // f is 2

Assignment operators: Assign a value to a variable. For example:

int a = 10;
int b = 5;
a = b; // a is now 5

Comparison operators: Compare two values and return a Boolean value indicating whether the
comparison is true or false. For example:

int a = 10;
int b = 5;
if (a > b) {
 printf("a is greater than b\n");
}
if (a == b) {
 printf("a is equal to b\n");
}
if (a < b) {
 printf("a is less than b\n");
}

Logical operators: Perform logical operations such as AND, OR, and NOT. For example:

int a = 1;
int b = 0;
if (a && b) {
 printf("Both a and b are true\n");
} else {
 printf("Either a or b is false\n");
}
if (a || b) {
 printf("Either a or b is true\n");
} else {
 printf("Both a and b are false\n");

}
if (!a) {
 printf("a is false\n");
} else {
 printf("a is true\n");
}

Increment and decrement operators: Increase or decrease the value of a variable by 1. For
example:

int a = 10;
a++; // a is now 11
a--; // a is now 10

There are many other types of operators in C, each serving a specific purpose. It's important to
understand how these operators work and how to use them effectively in your programs.

if
The if statement in C is used to execute a block of code conditionally, based on the value of a
Boolean expression. The Boolean expression is evaluated, and if it is true, the code block is executed.
If the expression is false, the code block is skipped.

Here is an example of using an if statement in a C program:

#include <stdio.h>
int main()
{
 int a = 10;
 int b = 5;
 if (a > b) {
 printf("a is greater than b\n");
 }
 return 0;
}

In this example, we have two variables, a and b, and we are using an if statement to check if a is
greater than b. If it is, the message "a is greater than b" is printed to the console. If a is not greater
than b, the code block is skipped and nothing is printed.

You can also use an else clause with an if statement to specify a block of code to be executed if the
Boolean expression is false. For example:

#include <stdio.h>
int main()
{
 int a = 10;
 int b = 5;
 if (a > b) {
 printf("a is greater than b\n");

 } else {
 printf("a is not greater than b\n");
 }
 return 0;
}

In this example, if a is greater than b, the message "a is greater than b" is printed. If a is not greater
than b, the message "a is not greater than b" is printed.

You can also use multiple if statements with else if clauses to create more complex conditional
logic. For example:

#include <stdio.h>
int main()
{
 int a = 10;
 int b = 5;
 if (a > b) {
 printf("a is greater than b\n");
 } else if (a == b) {
 printf("a is equal to b\n");
 } else {
 printf("a is less than b\n");
 }
 return 0;
}

In this example, if a is greater than b, the message "a is greater than b" is printed. If a is equal to b,
the message "a is equal to b" is printed. If neither of these conditions are true, the message "a is less
than b" is printed.

Array
An array in C is a collection of variables of the same data type that are stored in contiguous memory
locations and can be accessed using a single identifier. Arrays are useful for storing and
manipulating large amounts of data, as they allow you to access and manipulate multiple values
using a single loop or function.

Here is an example of declaring and initializing an array in C:

#include <stdio.h>
int main()
{
 int a[5] = {1, 2, 3, 4, 5};
 return 0;
}

In this example, we have declared an array a of 5 integers and initialized it with the values 1, 2, 3, 4,
and 5. The array has a fixed size of 5, and the values are stored in contiguous memory locations.

You can access individual elements of the array using the index operator []. The index of an array
element starts at 0 and goes up to the size of the array minus 1. For example:

#include <stdio.h>
int main()
{
 int a[5] = {1, 2, 3, 4, 5};
 printf("a[0] = %d\n", a[0]); // prints 1
 printf("a[1] = %d\n", a[1]); // prints 2
 printf("a[2] = %d\n", a[2]); // prints 3
 printf("a[3] = %d\n", a[3]); // prints 4
 printf("a[4] = %d\n", a[4]); // prints 5
 return 0;
}

In this example, we have accessed each element of the array a and printed its value to the console.

You can also use a loop to iterate over the elements of an array. For example:

#include <stdio.h>
int main()
{
 int a[5] = {1, 2, 3, 4, 5};
 for (int i = 0; i < 5; i++) {
 printf("a[%d] = %d\n", i, a[i]);
 }
 return 0;
}

String
A string in C is a sequence of characters stored in an array and terminated with a null character
('\0'). Strings are used to represent text data in C, and they are often used for input and output
operations.

In C, strings are represented as arrays of characters, and they are manipulated using string-
handling functions provided in the standard library.

Here is an example of declaring and initializing a string in C:

#include <stdio.h>
int main()
{
 char str[10] = "hello";
 return 0;
}

In this example, we have declared a string str as an array of characters with a size of 10. The string
is initialized with the value "hello", which is stored in the array along with a null character at the end
to mark the end of the string.

You can access individual characters of a string using the index operator []. The index of a character
in a string starts at 0 and goes up to the length of the string minus 1. For example:

#include <stdio.h>
int main()
{
 char str[10] = "hello";
 printf("str[0] = %c\n", str[0]); // prints 'h'
 printf("str[1] = %c\n", str[1]); // prints 'e'
 printf("str[2] = %c\n", str[2]); // prints 'l'
 printf("str[3] = %c\n", str[3]); // prints 'l'
 printf("str[4] = %c\n", str[4]); // prints 'o'
 return 0;
}

In this example, we have accessed each character of the string str and printed its value to the
console.

You can also use a loop to iterate over the characters of a string. For example:

#include <stdio.h>
int main()
{
 char str[10] = "hello";
 for (int i = 0; str[i] != '\0'; i++) {
 printf("str[%d] = %c\n", i, str[i]);
 }
 return 0;
}

In this example, we have used a for loop to iterate over the characters of the string str. The loop
continues to iterate as long as the current character is not the null character, which indicates the
end of the string.

User Input
To read user input in C, you can use the scanf function provided in the standard library. The scanf
function allows you to read data from the standard input (usually the keyboard) and store it in
variables.

Here is an example of using scanf to read an integer from the user in a C program:

#include <stdio.h>
int main()
{
 int a;
 printf("Enter an integer: ");
 scanf("%d", &a);
 printf("You entered: %d\n", a);
 return 0;

}

In this example, we have declared a variable a to store the integer input from the user. The printf
function is used to prompt the user to enter an integer, and the scanf function is used to read the
integer from the standard input. The %d specifier in the scanf format string indicates that an
integer is expected. The address of the variable a is passed as the argument to scanf, so that the
value read from the input can be stored in the variable.

After the scanf function is executed, the value of a will be the integer entered by the user. The
printf function is then used to print the value of a to the console.

You can use similar syntax to read other data types from the user, such as floating-point numbers,
characters, and strings. For example:

#include <stdio.h>
int main()
{
 float b;
 char c;
 char str[20];
 printf("Enter a floating-point number: ");
 scanf("%f", &b);
 printf("You entered: %f\n", b);
 printf("Enter a character: ");
 scanf(" %c", &c);
 printf("You entered: %c\n", c);
 printf("Enter a string: ");
 scanf("%s", str);
 printf("You entered: %s\n", str);
 return 0;
}

In this example, we have read a floating-point number, a character, and a string from the user using
the scanf function.

Pointers
A pointer in C is a variable that stores the memory address of another variable. Pointers are used to
access and manipulate the data stored at a specific memory location.

Pointers are declared using the * operator, which indicates that the variable is a pointer. For
example:

int *p; // p is a pointer to an integer
float *q; // q is a pointer to a float
char *r; // r is a pointer to a char

To assign a memory address to a pointer, you can use the & operator to obtain the memory address
of a variable. For example:

#include <stdio.h>
int main()
{
 int a = 5;
 int *p;
 p = &a; // assign the memory address of a to p
 printf("The memory address of a is: %p\n", &a);
 printf("The value stored at the memory address of a is: %d\n", *p);
 return 0;
}

In this example, we have declared an integer variable a with the value 5 and a pointer variable p
that can store a memory address. The & operator is used to obtain the memory address of a, which
is then assigned to p.

The printf function is used to print the memory address of a to the console, and the value stored at
that memory address is printed using the * operator, which is used to dereference a pointer and
access the value stored at the memory address it points to.

Pointers are a powerful and important feature of the C language, and they are used in many areas of
programming. They allow you to manipulate data stored in memory and provide a way to pass data
between functions.

Functions
A function in C is a self-contained block of code that performs a specific task and can be called from
other parts of a program. Functions are used to organize and structure code, and they allow you to
reuse code in multiple places.

Here is an example of a simple function in C:

#include <stdio.h>
int add(int x, int y)
{
 return x + y;
}
int main()
{
 int result = add(3, 4);
 printf("Result: %d\n", result);
 return 0;
}

In this example, we have defined a function add that takes two integers as arguments and returns
their sum. The function is defined with the int return type, which indicates that it returns an integer
value.

The function is called from the main function using the function name and passing the arguments 3
and 4. The return value of the function is assigned to the variable result and is printed to the
console using the printf function.

Functions can also be defined to take no arguments or to return no value. For example:

#include <stdio.h>
void print_message()
{
 printf("Hello, world!\n");
}
int main()
{
 print_message();
 return 0;
}

In this example, we have defined a function print_message that takes no arguments and returns no
value. The function is defined with the void return type, which indicates that it does not return a
value. The function simply prints a message to the console.

Functions can be defined with different parameter lists and return types, and they can be called
multiple times from different parts of the program. Functions are a powerful and important feature
of the C language, and they are used to organize and structure code in a modular way.

Function Parameters
A function parameter in C is a variable that is declared as part of a function's signature and passed
to the function when it is called. Function parameters are used to pass data to a function and to
specify the type of data that the function expects to receive.

Here is an example of a function with parameters in C:

#include <stdio.h>
int add(int x, int y)
{
 return x + y;
}
int main()
{
 int result = add(3, 4);
 printf("Result: %d\n", result);
 return 0;
}

In this example, we have defined a function add that takes two integers as arguments and returns
their sum. The variables x and y are the function parameters, and they are declared as part of the
function's signature.

When the function is called from the main function, the arguments 3 and 4 are passed to the
function and are assigned to the parameters x and y, respectively. The function performs the
addition operation and returns the result, which is then assigned to the variable result and printed
to the console.

Function parameters can be of any data type, and a function can have multiple parameters of
different types. For example:

#include <stdio.h>

float average(float a, float b, float c)
{
 return (a + b + c) / 3;
}

int main()
{
 float result = average(3.0, 4.0, 5.0);
 printf("Result: %f ", result);
 return 0;
}

Function Declaration
A function declaration in C is a statement that provides the compiler with the information it needs to
verify that a function is defined correctly and to generate code to call the function. A function
declaration specifies the function's name, return type, and parameter list.

A function declaration is also known as a function prototype, and it is typically placed at the
beginning of a C program, before the main function.

Here is an example of a function declaration in C:

#include <stdio.h>
int add(int x, int y); // function declaration
int main()
{
 int result = add(3, 4);
 printf("Result: %d\n", result);
 return 0;
}
int add(int x, int y) // function definition
{
 return x + y;
}

In this example, we have declared the function add before the main function using a function
declaration. The function declaration specifies the function's name, return type, and parameter list,
but it does not include the function's implementation.

The function is then defined after the main function, where the implementation is provided. The
function definition includes the function's name, return type, parameter list, and the code that is
executed when the function is called.

Function declarations are used to inform the compiler about the existence and signature of a

function, and they are necessary in C because functions can be defined in any order. Function
declarations allow you to call a function before it is defined, as long as the function is defined before
the program is executed.

Function declarations are also useful when writing large programs, as they allow you to define
functions in separate source files and link them together when the program is compiled. This helps
to organize and structure the code in a modular way.

Recursion
Recursion is a programming technique in which a function calls itself repeatedly until a certain
condition is met. Recursion is a powerful tool that allows you to solve problems by breaking them
down into smaller and simpler subproblems.

Recursion is often used to solve problems that can be naturally divided into smaller subproblems,
such as sorting and searching algorithms, tree traversals, and mathematical calculations.

Here is an example of a recursive function in C that calculates the factorial of a number:

#include <stdio.h>
int factorial(int n)
{
 if (n == 0) {
 return 1;
 }
 else {
 return n * factorial(n - 1);
 }
}
int main()
{
 int result = factorial(5);
 printf("Result: %d\n", result);
 return 0;
}

In this example, we have defined a recursive function factorial that calculates the factorial of a
given number n. The function has a base case that is triggered when n is 0, in which case it returns
1. For all other values of n, the function calls itself with n - 1 as the argument, and it returns the
product of n and the result of the recursive call.

The function is called from the main function with the argument 5, and it calculates the factorial of
5 by calling itself repeatedly until the base case is reached. The final result is then printed to the
console.

Recursion can be a useful technique for solving problems, but it is important to carefully consider
the efficiency and complexity of recursive algorithms and to ensure that they terminate correctly.
Recursive functions should always have a base case that stops the recursion, or they may enter an
infinite loop.

Math Functions
There are several ways to perform math operations in C. The C language provides a number of built-
in operators and functions for performing mathematical calculations, such as addition, subtraction,
multiplication, division, and modulus.

Here are some examples of using mathematical operators in C:

#include <stdio.h>
int main()
{
 int a = 5;
 int b = 3;
 int c;
 c = a + b; // addition
 printf("%d + %d = %d\n", a, b, c);
 c = a - b; // subtraction
 printf("%d - %d = %d\n", a, b, c);
 c = a * b; // multiplication
 printf("%d * %d = %d\n", a, b, c);
 c = a / b; // division
 printf("%d / %d = %d\n", a, b, c);
 c = a % b; // modulus
 printf("%d %% %d = %d\n", a, b, c);
 return 0;
}

In this example, we have performed several basic math operations using the built-in operators. The
+ operator is used for addition, the - operator is used for subtraction, the * operator is used for
multiplication, the / operator is used for division,

Structures (structs)
In C, a structure is a user-defined data type that can hold a collection of variables of different data
types. Structures are used to represent complex data types, such as records or objects, and they
allow you to group related data together and access it using a single variable.

Here is an example of defining a structure in C:

#include <stdio.h>
struct point {
 int x;
 int y;
};
int main()
{
 struct point p = {0, 0};
 printf("Point: (%d, %d)\n", p.x, p.y);
 return 0;

}

In this example, we have defined a structure called point that has two integer fields: x and y. The
structure is defined using the struct keyword, followed by the structure name and the list of fields in
curly braces.

To create a variable of the point structure type, we use the struct keyword followed by the
structure name and a variable name. In this example, we have created a variable p of the point
structure type and initialized it with the values 0 and 0.

To access the fields of a structure, you can use the . operator followed by the field name. In this
example, we have used the printf function to print the values of the x and y fields of the p structure.

Structures are a useful tool for representing complex data types and for organizing and accessing
data in a structured way. They are often used in conjunction with pointers to create linked lists,
trees, and other data structures.

Switch Statement
The switch statement in C is a control flow statement that allows you to execute a block of code
based on the value of an expression. It can be used as an alternative to multiple if statements when
you need to perform different actions based on several possible values of the expression.

Here is the basic syntax of a switch statement in C:

switch (expression) {
 case value1:
 // code block to execute if expression is value1
 break;
 case value2:
 // code block to execute if expression is value2
 break;
 ...
 default:
 // code block to execute if expression is none of the above values
 break;
}

In the switch statement, the expression is evaluated and compared to each of the case values. If a
match is found, the corresponding code block is executed. If no match is found, the code block under
the default label is executed.

It's important to include the break statement at the end of each code block, as it breaks out of the
switch statement and prevents the execution of subsequent code blocks. If you omit the break
statement, the code will continue to execute until it reaches a break or the end of the switch
statement.

Here is an example of using a switch statement in a C program:

#include <stdio.h>
int main()

{
 char grade = 'B';
 switch (grade) {
 case 'A':
 printf("Excellent\n");
 break;
 case 'B':
 printf("Good\n");
 break;
 case 'C':
 printf("Average\n");
 break;
 case 'D':
 printf("Poor\n");
 break;
 default:
 printf("Invalid grade\n");
 break;
 }
 return 0;
}

In this example, we have a variable grade that stores a letter grade. The switch statement
compares the value of grade to each of the case values, and if a match is found, the corresponding
message is printed to the console. If no match is found, the message "Invalid grade" is printed.

If you run this program with grade set to 'B', it will print the message "Good" to the console.

While
The while loop in C is a control flow statement that allows you to execute a block of code repeatedly
while a Boolean expression is true. The loop will continue to iterate as long as the expression is true,
and it will stop when the expression becomes false.

Here is the basic syntax of a while loop in C:

while (expression) {
 // code block to be executed
}

In the while loop, the expression is evaluated at the beginning of each iteration. If the expression is
true, the code block is executed. If the expression is false, the loop is terminated and control is
transferred to the next statement after the loop.

It's important to make sure that the Boolean expression eventually becomes false, or the loop will
run indefinitely and cause an infinite loop. You can use variables and operators within the expression
to create a conditional that can change over time.

Here is an example of using a while loop in a C program:

#include <stdio.h>
int main()
{
 int i = 0;
 while (i < 10) {
 printf("%d\n", i);
 i++;
 }
 return 0;
}

In this example, we have a variable i that is initialized to 0. The while loop continues to execute as
long as i is less than 10. Inside the loop, we print the value of i to the console and then increment i
by 1 using the ++ operator.

This program will print the numbers 0 through 9 to the console, one per line, and then terminate the
loop when i becomes 10.

The Do/While Loop
The do...while loop in C is similar to the while loop, but it executes the code block at least once
before checking the Boolean expression. This means that the code block will always be executed at
least once, regardless of the value of the expression.

Here is the basic syntax of a do...while loop in C:

do {
 // code block to be executed
} while (expression);

In the do...while loop, the code block is executed first, and then the expression is evaluated. If the
expression is true, the code block is executed again. The loop continues to iterate as long as the
expression is true, and it stops when the expression becomes false.

Here is an example of using a do...while loop in a C program:

#include <stdio.h>
int main()
{
 int i = 0;
 do {
 printf("%d\n", i);
 i++;
 } while (i < 10);
 return 0;
}

In this example, we have a variable i that is initialized to 0. The do...while loop executes the code
block once, printing the value of i to the console and incrementing i by 1. Then, the expression i <
10 is evaluated. If it is true, the code block is executed again, and the loop continues to iterate until

i becomes 10.

The do...while loop is useful when you want to ensure that the code block is executed at least once,
regardless of the value of the expression. It's important to note that the expression is evaluated after
the code block is executed, so the code block may be executed multiple times if the expression is
true.

for
The for loop in C is a control flow statement that allows you to execute a block of code repeatedly
for a specified number of iterations. It is often used when you need to perform a task multiple times
with a loop variable that changes each time through the loop.

Here is the basic syntax of a for loop in C:

for (initialization; condition; increment) {
 // code block to be executed
}

In the for loop, the initialization statement is executed first, and is usually used to initialize a loop
variable. The condition is then evaluated, and if it is true, the code block is executed. After the code
block is executed, the increment statement is executed and the loop variable is updated. The loop
continues to iterate as long as the condition is true, and it stops when the condition becomes false.

Here is an example of using a for loop in a C program:

#include <stdio.h>
int main()
{
 for (int i = 0; i < 10; i++) {
 printf("%d\n", i);
 }
 return 0;
}

In this example, we have a loop variable i that is initialized to 0 in the initialization statement. The
condition is i < 10, which means the loop will continue to iterate as long as i is less than 10. The
increment statement is i++, which increments i by 1 after each iteration.

This program will print the numbers 0 through 9 to the console, one per line, and then terminate the
loop when i becomes 10.

The for loop is a convenient way to perform a task multiple times with a loop variable that changes
each time through the loop. It's important to make sure that the loop variable is updated in a way
that will eventually cause the condition to become false, or the loop will run indefinitely and cause
an infinite loop.

Break
The break statement in C is a control flow statement that is used to exit a loop or a switch statement

prematurely. It is often used to terminate a loop early when a certain condition is met, or to exit a
switch statement when a matching case label is found.

Here is an example of using the break statement to exit a loop early in a C program:

#include <stdio.h>
int main()
{
 for (int i = 0; i < 10; i++) {
 if (i == 5) {
 break;
 }
 printf("%d\n", i);
 }
 return 0;
}

In this example, we have a for loop that iterates from 0 to 9, and a if statement that checks if i is
equal to 5. If i is equal to 5, the break statement is executed and the loop is terminated early.

This program will print the numbers 0 through 4 to the console, one per line, and then terminate the
loop when i becomes 5. The number 5 will not be printed because the break statement is executed
before the printf statement.

The break statement can also be used to exit a switch statement early.

Continue
The continue statement in C is a control flow statement that is used to skip the remainder of the
current iteration of a loop and move on to the next iteration. It is often used to skip certain iterations
of a loop when a certain condition is met, or to skip over certain code blocks in a loop.

Here is an example of using the continue statement to skip an iteration of a loop in a C program:

#include <stdio.h>
int main()
{
 for (int i = 0; i < 10; i++) {
 if (i % 2 == 1) {
 continue;
 }
 printf("%d\n", i);
 }
 return 0;
}

In this example, we have a for loop that iterates from 0 to 9, and an if statement that checks if i is
odd (has a remainder of 1 when divided by 2). If i is odd, the continue statement is executed and
the remainder of the current iteration is skipped.

This program will print the even numbers 0 through 8 to the console, one per line, and then

terminate the loop when i becomes 10. The odd numbers 1 through 9 will be skipped because of the
continue statement.

goto
The goto statement in C is a control flow statement that is used to transfer control to a labeled
statement in the same function. It is often used to break out of nested loops or to skip over certain
code blocks.

The goto statement should be used with caution, as it can make code more difficult to understand
and maintain. It is generally considered a poor programming practice, and there are often better
alternatives to using goto.

Here is the basic syntax of the goto statement in C:

goto label;
...
label:
 // code block to be executed

In the goto statement, the label is a identifier that represents a labeled statement in the same
function. When the goto statement is executed, control is transferred to the labeled statement.

Here is an example of using the goto statement to break out of a nested loop in a C program:

#include <stdio.h>
int main()
{
 int i, j;
 for (i = 0; i < 10; i++) {
 for (j = 0; j < 10; j++) {
 if (i == 5 && j == 5) {
 goto end;
 }
 printf("%d, %d\n", i, j);
 }
 }
end:
 printf("Done\n");
 return 0;
}

C maths
Let's see a simple example of math functions found in math.h header file.

#include<stdio.h>
#include <math.h>
int main(){
 printf("\n%f",ceil(3.6));

 printf("\n%f",ceil(3.3));
 printf("\n%f",floor(3.6));
 printf("\n%f",floor(3.2));
 printf("\n%f",sqrt(16));
 printf("\n%f",sqrt(7));
 printf("\n%f",pow(2,4));
 printf("\n%f",pow(3,3));
 return 0;
}

Dynamic memory allocation
Dynamic memory allocation in C programming refers to the process of allocating memory during
runtime—i.e., while the program is running—rather than prior to the program's execution. This is
crucial in scenarios where the amount of memory to be used is not known to the developer at
compile time. For example, when the memory requirement depends on user input. In C, dynamic
memory allocation is performed using a set of functions in the C standard library, namely malloc(),
calloc(), realloc(), and free(), which are available in the stdlib.h header file.

Here’s a brief overview of these functions:

malloc():

Stands for "memory allocation".

Allocates a specified number of bytes and returns a pointer to the allocated memory.

The memory allocated by malloc is uninitialized, meaning that the values at that memory location
are indeterminate.

int *arr = (int*)malloc(10 * sizeof(int)); // allocates memory for an
array of 10 integers

calloc():

Stands for "contiguous allocation".

Similar to malloc(), but it initializes the allocated memory to zero.

Requires two arguments: the number of elements to allocate and the size of each element.

int *arr = (int*)calloc(10, sizeof(int)); // allocates memory for an
array of 10 integers and initializes all bytes to zero

realloc():

Stands for "re-allocation".

Used to resize the previously allocated memory block without losing old data.

Requires two arguments: a pointer to the memory previously allocated with malloc, calloc or

realloc and the new size.

arr = (int*)realloc(arr, 15 * sizeof(int)); // resizes the previous
memory allocation to an array of 15 integers

free():

Deallocates the memory previously allocated by malloc(), calloc(), or realloc().

Helps to prevent memory leaks by freeing up memory when it is no longer needed.

free(arr); // deallocates memory for the array

When using dynamic memory allocation, there are some best practices and precautions that should
be kept in mind:

Always check if the memory allocation was successful by verifying that the returned pointer is
not NULL.
Avoid memory leaks by ensuring every allocation has a corresponding free() when the
memory is no longer needed.
Be cautious when working with uninitialized memory, such as that allocated by malloc(), to
prevent undefined behavior.
Avoid assumptions about the layout of dynamic memory (e.g., alignment, padding).
Be aware of the potential for fragmentation in dynamic memory allocation, particularly when
allocating many small blocks of memory.

Dynamic memory plays a vital role in creating complex data structures such as trees, graphs, and
linked lists, which have variable sizes and structures that are often unknown until runtime.

comments
In C programming, comments are used to provide explanations or annotations in the source code.
Comments make the code more understandable for developers who may work on the codebase later.
The C language supports two types of comments:

Single-line comments: These comments start with // and continue to the end of the line. Anything
written after // on the same line is considered a comment and is ignored by the compiler.

// This is a single-line comment.
int main() {
 // This is also a single-line comment.
 return 0; // Comment after code.
}

Multi-line comments: These comments start with /* and end with */. Anything between these
delimiters is a comment and will be ignored by the compiler.

/*
This is a multi-line comment.
It spans several lines.

*/
int main() {
 /* This is also a multi-line comment,
 but it's on multiple lines to fit beside code. */
 return 0;
}

Important Notes:

Nested multi-line comments are not supported. That is, you cannot start a new multi-line comment
before closing the previous one.

/* This is the start of the first comment
/* This is incorrect and will cause a compilation error */
This is still part of the first comment */

Comments do not affect the behavior of the program; they are only for human readers.

Be careful when commenting out code. Using multi-line comments around code that already contains
multi-line comments can lead to compilation errors.

Best Practices:

Use comments to explain why certain code exists, not what it does (unless it's particularly
complex).
Keep comments up-to-date when modifying the code; outdated comments can be misleading.
Avoid commenting out large sections of code; use version control systems for that.
Use consistent commenting style throughout the codebase.

AI
Implementing AI for pattern recognition, prediction, decision-making, and learning from data in C
requires a significant amount of work and is much more complex than implementing basic arithmetic
operations.

C is a lower-level programming language and does not have as many libraries and tools for AI and
machine learning as languages like Python. However, it is still possible to implement machine
learning algorithms in C from scratch or by using certain libraries.

Here’s a rough guide on how you might approach this:

1. Pattern Recognition:

You might implement algorithms like Neural Networks or Support Vector Machines from scratch or
use libraries like FANN (Fast Artificial Neural Network Library).

2. Prediction:

For prediction, you might use regression algorithms. If you have time series data, you might use
algorithms like ARIMA. Implementing these from scratch in C would require a solid understanding
of the underlying mathematics.

http://leenissen.dk/fann/wp/

3. Decision-Making:

Decision trees or reinforcement learning algorithms could be implemented for decision-making
tasks.

4. Learning from Data:

You would need to implement or use existing implementations of machine learning algorithms,
ensuring that they can learn and update their models based on input data.

Example: A Very Simple Linear Regression in C

Here’s an example of a very simple linear regression implementation in C for prediction:

#include <stdio.h>
float mean(int arr[], int n) {
 float sum = 0;
 for (int i = 0; i < n; i++)
 sum += arr[i];
 return sum / n;
}
float covariance(int x[], int y[], int n, float x_mean, float y_mean) {
 float covar = 0;
 for (int i = 0; i < n; i++)
 covar += (x[i] - x_mean) * (y[i] - y_mean);
 return covar;
}
float variance(int arr[], int n, float mean) {
 float var = 0;
 for (int i = 0; i < n; i++)
 var += (arr[i] - mean) * (arr[i] - mean);
 return var;
}
float coefficients(int x[], int y[], int n) {
 float x_mean, y_mean, b1, b0;
 x_mean = mean(x, n);
 y_mean = mean(y, n);
 b1 = covariance(x, y, n, x_mean, y_mean) / variance(x, n, x_mean);
 b0 = y_mean - b1 * x_mean;
 printf("Coefficients: b0 = %.2f, b1 = %.2f\n", b0, b1);
 return b0 + b1 * x[n-1]; // For simplicity, let's predict the next
value
}
int main() {
 int x[] = {1, 2, 3, 4, 5};
 int y[] = {2, 4, 5, 4, 5};
 int n = sizeof(x) / sizeof(x[0]);
 float prediction = coefficients(x, y, n);
 printf("Predicted value: %.2f\n", prediction);
 return 0;

}

This example implements a simple linear regression model. It predicts a value based on a given
dataset. This is a very basic example and real-world AI applications require more sophisticated
algorithms and data preprocessing.

Implementing AI in C is feasible but challenging, especially for complex tasks. For most AI
applications, especially those requiring deep learning, a high-level language like Python, with access
to libraries like TensorFlow or PyTorch, is generally more appropriate and efficient.

MySQL
Creating a CRUD application in C with a MySQL database involves using the MySQL C API. Here's a
step-by-step guide to create such an application:

Setup

Install MySQL and MySQL C Connector:

Make sure MySQL is installed on your system. Also, you need to install the MySQL C Connector:

sudo apt-get install libmysqlclient-dev

Create MySQL Database and Table:

Open your MySQL client and create a database and a table:

CREATE DATABASE crud_db;
USE crud_db;
CREATE TABLE users (
 id INT AUTO_INCREMENT PRIMARY KEY,
 name VARCHAR(255),
 email VARCHAR(255)
);

Code

Include Necessary Headers:

Create a file crud.c and include necessary headers:

#include <mysql/mysql.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

Define MySQL Connection Function:

MYSQL *connect_db() {
 MYSQL *conn = mysql_init(NULL);

 if (conn == NULL) {
 fprintf(stderr, "mysql_init() failed\n");
 exit(EXIT_FAILURE);
 }
 if (mysql_real_connect(conn, "localhost", "root", "password",
"crud_db", 0, NULL, 0) == NULL) {
 fprintf(stderr, "mysql_real_connect() failed\n");
 mysql_close(conn);
 exit(EXIT_FAILURE);
 }
 return conn;
}

Define CRUD Operations:

void create_user(MYSQL *conn, const char *name, const char *email) {
 char query[256];
 snprintf(query, sizeof(query), "INSERT INTO users (name, email) VALUES
('%s', '%s')", name, email);
 if (mysql_query(conn, query)) {
 fprintf(stderr, "INSERT error: %s\n", mysql_error(conn));
 } else {
 printf("User added.\n");
 }
}
void read_users(MYSQL *conn) {
 if (mysql_query(conn, "SELECT * FROM users")) {
 fprintf(stderr, "SELECT error: %s\n", mysql_error(conn));
 return;
 }
 MYSQL_RES *result = mysql_store_result(conn);
 if (result == NULL) {
 fprintf(stderr, "mysql_store_result() failed: %s\n",
mysql_error(conn));
 return;
 }
 int num_fields = mysql_num_fields(result);
 MYSQL_ROW row;
 while ((row = mysql_fetch_row(result))) {
 for (int i = 0; i < num_fields; i++) {
 printf("%s ", row[i] ? row[i] : "NULL");
 }
 printf("\n");
 }
 mysql_free_result(result);
}
void update_user(MYSQL *conn, int id, const char *name, const char
*email) {
 char query[256];
 snprintf(query, sizeof(query), "UPDATE users SET name='%s', email='%s'
WHERE id=%d", name, email, id);

 if (mysql_query(conn, query)) {
 fprintf(stderr, "UPDATE error: %s\n", mysql_error(conn));
 } else {
 printf("User updated.\n");
 }
}
void delete_user(MYSQL *conn, int id) {
 char query[256];
 snprintf(query, sizeof(query), "DELETE FROM users WHERE id=%d", id);
 if (mysql_query(conn, query)) {
 fprintf(stderr, "DELETE error: %s\n", mysql_error(conn));
 } else {
 printf("User deleted.\n");
 }
}

Main Function:

int main() {
 MYSQL *conn = connect_db();
 int choice, id;
 char name[255], email[255];
 while (1) {
 printf("1. Create User\n");
 printf("2. Read Users\n");
 printf("3. Update User\n");
 printf("4. Delete User\n");
 printf("5. Exit\n");
 printf("Enter your choice: ");
 scanf("%d", &choice);
 switch (choice) {
 case 1:
 printf("Enter name: ");
 scanf("%s", name);
 printf("Enter email: ");
 scanf("%s", email);
 create_user(conn, name, email);
 break;
 case 2:
 read_users(conn);
 break;
 case 3:
 printf("Enter user ID: ");
 scanf("%d", &id);
 printf("Enter new name: ");
 scanf("%s", name);
 printf("Enter new email: ");
 scanf("%s", email);
 update_user(conn, id, name, email);
 break;
 case 4:

 printf("Enter user ID: ");
 scanf("%d", &id);
 delete_user(conn, id);
 break;
 case 5:
 mysql_close(conn);
 exit(EXIT_SUCCESS);
 default:
 printf("Invalid choice.\n");
 }
 }
 mysql_close(conn);
 return 0;
}

Compilation and Execution

Compile the program:

gcc -o crud crud.c -lmysqlclient

Run the program:

./crud

This will provide you with a basic terminal-based CRUD application using C and MySQL. The
program allows you to create, read, update, and delete users from the database.

